David S Wisbey, Ph.D.
Assistant Professor
Physics
Education
Postdoctoral Fellowship
NIST, Boulder, CO, 2008-2011
Degrees
- Ph.D., Condensed Matter Physics, Univ. of Nebraska-Lincoln, 2008
- M.S., Physics, Univ. of Nebraska-Lincoln 2005
- B.A., Physics, Union College, Lincoln, NE 2002
Research Interests
Wisbey's research interests include materials for quantum computing, microwave resonators and amplifiers, and neutron detectors. Currently, he uses coplanar waveguides as a tool to probe different materials including defects in Si(100), boron nitride, and graphene. Noise in electronics is a fundamental issue that occurs in many different areas including 2D materials and superconducting circuits. Decoherence is generated by materials which quantum bits are made of, this is a major obstacle preventing a working quantum computer. His background in surface science is an invaluable tool he uses to address important questions about materials used in quantum computing. Wisbey works with many undergraduate students, which is helping to train the quantum scientists and quantum engineers of tomorrow.
Labs and Facilities
The 3-Port Simulation Method File for Sonnet:
The following curve equation file can be inserted into Sonnet to calculate the local
Q as:
FTYP EQUA 4! Sonnet Equations File
EQN “QZin3”
EQS USER FILE
EQD Calculate Q factor from input impedance of port3. EQH
Zin3=Z03*(1+s33)/(1-s33)
Q=f0/2*slope of imag(Zin3)/real(Zin3)
END EQH
AXISLABEL “Q”
ARGS 1
ARG 1!begin arg 1 definition
NAME s33
RES S 33
END ARG ! end of arg 1 definition
BODY
0.5*FREQ[f]*(imag(50*(1+s33[f])/(1-s33[f])) - imag(50*(1+s33[f-1])/(1-s33[f-1]))/(FREQ[f]-FREQ[f-1])
/real(50*(1+s33[f])/(1-s33[f]))
END BODY
END EQN
You will need to make sure it is the right format. Please email me and I would be happy to email a copy of my equation file.
Publications and Media Placements
Presentations
Ultra-High Vacuum Electron-Beam Evaporated Niobium for Low-Loss Superconducting Coplanar Waveguide Resonators, Daria Kowsari,Kaiwen Zheng, Jonathan Monroe,Nathan Thobaben, Xinyi Du,Patrick Harrington,Erik Henriksen, David Wisbey, Kater Murch, MRS Fall Meeting, Boston, Massachusetts, 2021.
Improving Materials for Quantum Computing, David Wisbey, Jacob Brewster, Jiansong
Gao, pro Department of Physics, 2018.
Using Superconducting Microwave Resonators to Measure the Dielectric Constant and
Quality Factor of Ortho-Carborane-Capped Aluminum Nanoparticle Thin Films, Jacob Brewster,
Xander Benziger, Paul Jelliss, David Wisbey, APS March Meeting, New Orleans, 2017.
Publications
Zheng, D. Kowsari, N. J. Thobaben, X. Du, X. Song, S. Ran, E. A. Henriksen, D. S. Wisbey, K. W. Murch, “Nitrogen Plasma Passivated Niobium Resonators for Superconducting
Quantum Circuits”, Appl. Phys. Lett. 120, 102601 (2022).
Kowsari, K. Zheng, J. T. Monroe1, N. J. Thobaben, X. Du, P. M. Harrington, E. A. Henriksen, D. S. Wisbey, K. W. Murch, “Fabrication and surface treatment of electron-beam evaporated niobium for low-loss coplanar waveguide resonators”, Appl. Phys. Lett. 119, 132601 (2021).
T. Monroe, D. Kowsari, K. Zheng, C. Gaikwad, J. Brewster, D. S. Wisbey, K. W. Murch, “Optical direct write of Dolan–Niemeyer-bridge junctions for transmon qubits”, Appl. Phys. Lett. 119, 062601 (2021).
Wisbey, D.S., Vissers, M.R., Gao, J. Kline, J.S., Sandberg, M.O., Weides, M.P., Paquette, M.M., Karki, S., Brewster, J., Alameri, D., Kuljanishvili, I., Caruso, A.N., Pappas, D.P., J Low Temp Phys. 195, 474 (2019).
D. S. Wisbey, A. Martin, A. Reinisch, "New Method for Determining the Quality Factor
and Resonance Frequency of Superconducting Micro-Resonators from Sonnet Simulations"
J. Low Temp. Phys. 176, 538-544, (2014).
M. R. Vissers, J. Gao, J. S. Kline, M. O. Sandberg, M. P. Weides, D. S. Wisbey, D. P. Pappas, "Characterization and in-situ monitoring of sub-stoichiometric adjustable superconducting critical temperature titanium nitride growth", Thin Solid Films 548, 485 (2013).
M. R. Vissers, J. Gao, M. O. Sandberg, S. M. Duff, D. S. Wisbey, K. D. Irwin, D. P. Pappas, "Proximity-coupled Ti/TiN multilayers for use in kinetic inductance detectors" Appl. Phys. Lett. 102, 23, 232603 (2013).
J. Gao, M. R. Vissers, M. O. Sandberg, F. C. S. da Silva, S. W. Nam, D. P. Pappas, D. S. Wisbey, E. C. Langman, S. R. Meeker, B. A. Mazin, H. G. Leduc, J. Zmuidzinas, K. D. Irwin, "A titanium-nitride near-infrared kinetic inductance photon-counting detector and it anomalous electrodynamics", Appl. Phys. Lett. 101, 142602, (2012).
M. Sandberg, M. R. Vissers, J. S. Kline, M. Weides, J. S. Gao, D. S. Wisbey, D. P. Pappas, "Etch induced microwave lasses in titanium nitride superconducting resonators", Appl. Phys. Lett. 100, 26, 262605 (2012).
M. R. Vissers, J. S. Kline, J. S. Gao, D. S. Wisbey, D. P. Pappas, "Reduced microwave loss in trenched superconducting coplanar waveguides", Appl. Phys. Lett. 100, 082602 (2012).
J. S. Kline, M. R. Vissers, F. C. S. da Silva, D. S. Wisbey, M. Weides, t. J. Weir, B. Turek, D. A. Braje, W. D. Oliver, Y. Shalibo, N. Katz, B.R. Johnson, T. A. Ohki, D. P. Pappas, "Sub-micrometer epitaxial Josephson junctions for quantum circuits.", Superconduc. Sci. Tech. 25, 025005 (2012).
M. P. Weides, J. S. Kline, 1 M. R. Vissers, M. O. Sandberg, D. S. Wisbey, B. R. Johnson,
T. A. Ohki, D. P . Pappas, "Coherence in transmon qubit with epitaxial tunnel junctions",
Appl. Phys. Lett. 99, 262502 (2011).
D. P. Pappas, M. R. Vissers, D. S. Wisbey, J. S. Kline, J. S. Gao, "Two Level System
Loss in Superconducting Microwave Resonators", IEEE Trans. Appl. Supercond. 21, 871
(2011).
M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, D. P. Pappas, "Low Loss Superconducting Titanium Nitride Coplanar Waveguide Resonators", Appl. Phys. Lett. 97, 232509 (2010).
D. S. Wisbey, J. Gao, M. R. Vissers, F. C. S. Da Silva, J. S. Kline, L. Vale, D. P. Pappas, "Effect of metal/substrate interfaces on RF loss in superconducting coplanar waveguides", J. Appl. Phys. 108, 093918 (2010)